Prediction of delayed renal allograft function using an artificial neural network.
نویسندگان
چکیده
BACKGROUND Delayed graft function (DGF) is one of the most important complications in the post-transplant period, having an adverse effect on both the immediate and long-term graft survival. In this study, an artificial neural network was used to predict the occurrence of DGF and compared with traditional logistical regression models for prediction of DGF. METHODS A total of 304 cadaveric renal transplants performed at the Jewish Hospital, Louisville were included in the study. Covariate analysis by artificial neural networks and traditional logistical regression were done to predict the occurrence of DGF. RESULTS The incidence of DGF in this study was 38%. Logistic regression analysis was more sensitive to prediction of no DGF (91 vs 70%), while the neural network was more sensitive to prediction of yes for DGF (56 vs 37%). Overall prediction accuracy for both logistic regression and the neural network was 64 and 63%, respectively. Logistic regression was 36.5% sensitive and 90.7% specific. The neural network was 63.5% sensitive and 64.8% specific. The only covariate with a P < 0.001 was the transplant of a white donor kidney to a black recipient. Cox proportional hazard regression was used to test for the negative effect of DGF on long-term graft survival. One year graft survival in patients without DGF was 92 +/- 2% vs 81 +/- 3% in patients with DGF. The 5-year graft survival was not affected by DGF in this study. CONCLUSION Artificial neural networks may be used for prediction of DGF in cadaveric renal transplants. This method is more sensitive but less specific than logistic regression methods.
منابع مشابه
Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method
In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...
متن کاملComparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...
متن کاملBubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...
متن کاملAn Artificial Neural Network Model for Prediction of the Operational Parameters of Centrifugal Compressors: An Alternative Comparison Method for Regression
Nowadays, centrifugal compressors are commonly used in the oil and gas industry, particularly in the energy transmission facilities just like a gas pipeline stations. Therefore, these machines with different operational circumstances and thermodynamic characteristics are to be exploited according to the operational necessities. Generally, the most important operational parameters of a gas pipel...
متن کاملSolubility Prediction of Drugs in Supercritical Carbon Dioxide Using Artificial Neural Network
The descriptors computed by HyperChem® software were employed to represent the solubility of 40 drug molecules in supercritical carbon dioxide using an artificial neural network with the architecture of 15-4-1. The accuracy of the proposed method was evaluated by computing average of absolute error (AE) of calculated and experimental logarithm of solubilities. The AE (±SD) of data sets was 0.4 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 18 12 شماره
صفحات -
تاریخ انتشار 2003